PRESCRIPTIONS FOR A RARE DISEASE. IS THERE A CURE? 2023 PATIENT FAMILY GATHERING

JITHMA ABEYKOON, MD MAYO CLINIC

ERDHEIM CHESTER DISEASE TREATMENTS:

PRESCRIPTIONS FOR A RARE DISEASE. IS THERE A CURE?

Jithma Abeykoon, M.D. Assistant Professor in Hematology and Medical Oncology Mayo Clinic, MN

OUTLINE

- Introduction
- Walk with a case
- Treatment options
- Definition of cure
- Is there a cure?
- Future directions

REVISED CLASSIFICATION OF HISTIOCYTOSES AND NEOPLASMS OF THE MACROPHAGE-DENDRITIC CELL LINEAGES

Redrawn from: Emile JF, et al. Blood 2016;127:2672-2681 Slides from Dr. Go

HISTIOCYTIC DISEASES

L Group	C Group	R Group	M Group	H Group
 Langerhans cell histiocytosis Single system no lung SS lung Multisystem w/o risk organ Multisystem w/ risk organ Multisystem w/ risk organ W/ MPN/MDS Erdheim-Chester disease Classical Non-classical W/ MPN/MDS Extracutaneous JXG Mixed LCH/ECD 	 Xanthogranuloma family Juvenile XG Adult XG Solitary reticulohistiocytoma Benign cephalic histiocytosis Generalized eruptive histiocytosis Progressive nodular histiocytosis Non-XG family Cutaneous RDD Necrobiotic xanthogranuloma 	 Familial RDD Faisalabad syndrome FAS deficiency Classical RDD W/ IgG4 W/o IgG4 Extranodal RDD Bone RDD CNS RDD Other single-organ RDD Disseminated RDD Neoplasia-associated RDD Immune disease-associated RDD SI E/HIV//AIHA/IA 	 Histiocytic sarcoma Interdigitating dendritic cell sarcoma Langerhans cell sarcoma Indeterminate cell sarcoma Indeterminate cell sarcoma Primary Secondary ALL CLL Follicular lymphoma Hairy cell leukemia Other histiocytoses 	 Primary hemophagocytic lymphohistiocytosis W/ lymphocyte cytotoxic defects W/ inflammasome activation W/Mendelian disorders affecting inflammation Secondary HLH Infection-associated Malignancy-triggered Rheumatologic Transplant-related latrogenic immune activation/suppression

Redrawn from: Emile JF, et al. Blood 2016;127:2672-2681 Slides from Dr. Go

Organ Involvement

Redrawn from: Goyal et al, Blood, 2020

HISTIOCYTIC DISEASES

ANNUAL INCIDENCE/ 1,000,000 POPULATION

Stalemark H, et al. Pediatr Blood Cancer 2008;51;76-81 Goyal G, et al. Br J Haematol 2018;182:579-581 Makras P, et al. Pediatr Blood Cancer 2020;67:e28422 Slides from Dr. Go

HISTOPATHOLOGIC FEATURES

	Tests	ECD	LCH	RDD
CD68	Monocyte/macrophage protein Binds to tissue lectin/selectin	+	+	+
CD163	Monocyte/macrophage protein Receptor for hgb-haptoglobin complex	+	+	+
CD1a	Related to MHC proteins Binds to b2-microglobulin	-	+	-
CD207	Langerin; C-type lectin Localized in Birbeck granules	-	+	-
S100	Homodimeric polypeptides Cell marker: neural crest, melanocyte	+/-	+	+
Factor XIIIa	Monocyte/macrophage protein AKA fibrin-stabilizing factor	+	-	-
Touton giant cells	Macrophage-derived multinucleated giant cells with high lipid content	+	-	-
Emperipolesis	Intact inflammatory cells within cytoplasm of histiocytes	-	-	+
BRAFV600E	Proto-oncogene; cell division	50%	60%	0%
MAPK/ERK	Cell growth and proliferation	40%	30%	40%

Diamond EL, et al. Blood 2014;124:483-492; Durham BH. Semin Cell Dev Biol 2019;86:62-76.

MOLECULAR ALTERATIONS IN HISTIOCYTOSIS

Redrawn from: Durham BH. Semin Cell Dev Biol 2019;86:62-76

MEET ANYA

Permission obtained from the patient

22-YEAR-OLD FEMALE WITH CNS INVOLVED ECD

November 2017 New onset of headaches with increased intracranial pressure; placed VP shunt

May 2, 2019 MRI brain with leptomeningeal enhancement and enhancing nodularity along the entire spinal cord involving cord and nerve roots May 14, 2019 L2-L3 laminectomy, durotomy and bx

- Pathology: atypical histiocytic infiltrate which was positive for cyclin D1, factor XIIIa, and negative for CD1a and BRAF-V600E on IHC.
- Final diagnosis was Erdheim-Chester disease

©2023 Mayo Foundation for Medical Education and Research | WF2514684-13

TREATMENT

	Regimen	Study	No.	Response	Comments						
*	Vemurafenib ¹	Phase II	22	100% by mod PERCIST	Newly diagnosed BRAFV600 mutant; 80% CR; no relapse at 29 month-FU; recommend starting at half-dose 480 mg PO BID; most relapsed w/ vemurafenib discontinuation ²					100%	
*	Cobimetinib ^{2,3}	Phase 2	18	89% by PRC	Newly diagnosis and previously treated. 72% CR, 17% PR and 6% SD. All responses were durable during 1 year of follow-up						89%
	Sirolimus + prednisone ⁴	Open label	10	80%	1 CR; Highest responses in retroperitoneal and cardiovascular areas					80	1%
	Interferon a ⁵	Prospective cohort	46	Not reported	All w/ CNS involvement; interferon-treated group better than no interferon (HR: 0.32)						
Cladribine ⁶ Retrospective 21 52%		52%	1 CR; Median of 2.5 cycles; median duration of response: 9 months; all sites responded including CNS		52%						
	Cytarabine ⁷	Retrospective cohort	9	87.5% by PERCIST	1 CR; CNS response 91%; 2-year PFS and OS was 75% and 93.5%						87.5%
	Anakinra ⁸	Retrospective cohort	12	17% by PERCIST	1 CR; median duration of rx: 22 months; 50% symptom improvement; 22% stable disease	•	179	6			
	Infliximab ⁹	Retrospective cohort	12	42% by PERCIST	No CR; 25% stable disease; median duration of rx: 14 months; cardiac and CNS responses noted			42	2%		
	Methotrexate ¹⁰	Retrospective cohort	13	23%	No CR; 54% stable disease; median duration of rx: 4 months (FU incomplete); ophthalmologic responses noted		2	3%			
1 2 3	Diamond EL, et Diamond et al, N Aubart FC, et al	al. JAMA Oncol lature, 2019; 56 . Blood 2017;13	2018;4 7(7749 0:1377-	:384-388): 521–524 ·1380.	⁶ Goyal G, et al. JAMA Oncol 2017;3:1253-1256 ⁷ Liu et al, Orphanet J Rare Dis. 2022; 17: 39 ⁸ Cohen-Aubart F, et al. Blood 2016;127:1509-1512.	0	20 Over	40 all res	60 sponse	80 e rate	100

²Diamond et al, Nature, 2019; 567(7749): 521–524 ³Aubart FC, et al. Blood 2017;130:1377-1380. ⁴Gianfreda D, et al. Blood 2015;126:1163-1171 ⁵Arnaud L, et al. Blood 2011;117:2778-2782

⁷Liu et al, Orphanet J Rare Dis. 2022; 17: 39
⁸Cohen-Aubart F, et al. Blood 2016;127:1509-1512.
⁹Cohen-Aubart F, et al. Ann Rheum Dis 2018;epub ahead
¹⁰Goyal G, et al. Blood Cancer J 2017;7:647

TARGETED THERAPY AND ASSOCIATED ADVERSE EFFECTS (AES)

- In the phase II trial of vemurafenib, all patients required dose reductions below the 960mg twice daily dose due to intolerable AEs
- 29% discontinued the medication due to intolerable AEs
- 56% had dose reduction with cobimetinib due to AEs

AEs

- Rash
- Diarrhea
- Electrolyte imbalance
- Cardiac dysfunction
- Abnormalities in red blood cells, white blood cells and platelets
- 1. Diamond E, Subbiah V, Lockhart A, et al. Vemurafenib for BRAF V600-Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis: Analysis of Data From the Histology-Independent, Phase 2, Open-label VE-BASKET Study. JAMA Oncol, 2018, 4 (3): 384-388.
- 2. Gordon JR, Antonious H, Low-dose vemurafenib monotherapy in BRAFV600Emutated Erdheim-Chester disease. Leuk Lymphoma, 2020, 61(11):2733-2737.
- 3. Diamond et al, Nature, 2019; 567(7749): 521–524.

ADVERSE EFFECTS

Continuous therapy (% total, % grade >3) (vemurafenib/cobimetinib)	Fixed duration therapy (% total, % grade >3) (cladribine/cytarabine)
Joint pain (82, 14)	Infection (20)
Rash (50-80, 10-18)	Hematologic (40-100, 100)
Fatigue (20-55, 5)	Nausea (20)
Hair loss (55)	Fatigue (80)
Diarrhea (50-60)	Diarrhea (50%)
Neuropathy (41)	Hair loss
Nausea and vomiting (20—30)	Itching (50)
Edema (22)	

Decrease white blood cell count (17)

CLINICAL TRIALS

Phase	Treatment	Institutions	Comments	Status
I	Anakinra or denosumab + everolimus (mTOR inhibitor)	MD Anderson (Houston)	NCT01624766; previously treated	completed
I	DCC-2618 (c-Kit inhibitor)	Multiple	NCT02571036 previously treated	completed
I	Ulixertinib or BVD-523 (ERK inhibitor)	Multiple	NCT01781429; newly diagnosed or previously treated	completed
I	Selinexor + choline salicylate	Mayo Clinic, MN	NCT04640779; previously treated	recruiting
I	Virotherapy	Mayo Clinic, MN	NCT03017820; previously treated	recruiting
1/11	PLX8394 (BRAF inhibitor)	Multiple (11 sites)	NCT02428712; previously treated BRAF mutated	active, not recruiting
1/11	HH2710 (ERK1/2 inhibitor)	Multiple	NCT04198818; previously treated MAPK mutated	terminated
	Lenalidomide (immunomodulatory agent)	Dana Farber (Boston)	NCT02523040; newly diagnosed or previously treated	active, not recruiting
	HLX208 (BRAF inhibitor)	China	NCT05092815; BRAF mutated; Newly diagnosed or previously treated	recruiting
II	Cobimetinib	NACHO (Baltimore, Dallas, DC, Houston, Madison, Memphis, Orange)	NCT04079179; previously treated patients	recruiting
	Dabrafenib (BRAF inhibitor) or trametinib (MEK inhibitor)	National Institute of Health (Bethesda)	NCT02281760; BRAF mutated; Newly diagnosed or previously treated; study suspended	completed
	Nivolumab (PD1 antibody)	Multiple (52 sites)	NCT02832167; previously treated	completed
II	LY3023414, selumetinib, ensartinib, olaparib, palbociclib, ulixertinib, selpercatinib	Children's Oncology Group: Pediatric MATCH trial; multiple US sites	NCT03155620; previously treated	recruiting
/	Vemurafenib and cobimetinib	Multiple (UK)	NCT05768178; BRAF mutated; Newly diagnose	recruiting

BACK TO OUR PATIENT

NGS TESTING ON 05/2019

GENOMIC VARIANTS	VARIANTS OF U	INKNOWN SIGN	Anj	Anya Magnuson TL-19-B24BFC					
Somatic - Potentially Actionable / Biologically Relevant		Somatic	Mutation effect			Variant allele fraction			
No reportable pathogenic variants were found.		UGT1A8	c.1366G>A p.V456M Missense variant		17.0% —	17.0% —			
Germline - Pathogenic / Likely Pathogenic			NM_019076						
No pathogenic variants were found in the limited set of ger	nes on which we report.	NDUFC2-KCTD14	c.136_138delinsGTG p.L46V Missense variant NM_001203260		11.0% -				
IMMUNOTHERADY MARKERS		Germline	Mutation effect			Condition			
		APC	c.5335A>G p.I1779V Missense variant chr5:112176626 NM_000038			Familial adenomat	Familial adenomatous polyposis		
Tumor Mutational Burden									
0.8 m/MB 16th percentile									
TREATMENT IMPLICATIONS	<u>.</u>	LOW COVERAGE	REGIONS						
No reportable treatment options found.		GFRA2	GSTT1	HDAC4	NOTCH1	PDPK1	SEMA3C		
		ZNRF3							
CLINICAL TRIALS									
Single-agent Cobimetinib for Adults With Histiocytic Disorders (<u>NCT02649972</u>)	Phase II New York, NY - 970 mi								

TREATMENT

Jul-Sep 2019

Cobimetinib; cycle 1 complicated by diarrhea and dose was decreased to 40 mg from 60 mg

Response: progressive disease in the lumbar spine and nerve roots

Nov 2019 – Feb 2020

6 cycles of high-dose methotrexate

Response: clinical response with improvement of lower extremity numbness, tingling and motor strength as well as headaches

Oct 2019

1 dose of interferon with poor tolerance; intractable headaches requiring hospital admission Mar 2020

Radiographic and clinical progression as well as clinical progression

GENOMIC VARIANTS

VARIANTS OF UNKNOWN SIGNIFICANCE

Anya Magnuson | TL-20-8B2AB9

Variant allele fraction

66.5%

44.4% -----

36.9%

34.7%

31.2% -----

27.4% ----

6.5% -

GENOMIC VARIANTS	TARIANTS	T ONKNOWN SIGNIFICANCE		
Somatic - Potentially Actionable / Biologically Relevant	Somatic	Mutation effect		
No reportable pathogenic variants were found.	APC	c.5335A>G p.I1779V Missense variant NM_000038		
	ERBB3	c.316C>T p.R106* Stop gain NM_001982		
IMMUNOTHERAPY MARKERS	EGLN1	c.320C>G p.A107G Missense variant NM_022051		
Tumor Mutational Burden	LRP1B	c.11833G>A p.G3945R Missense variant NM_018557		
3.7 m/MB 60th percentile	RANBP2	c.3278T>C p.l1093T Missense variant NM_006267		
	CSF1R	c.1646_1660del p.R549_E554delinsQ Inframe deletion NM_005211		
TREATMENT IMPLICATIONS	UGT1A8	c.1366G>A p.V456M Missense variant NM_019076		
No reportable treatment options found.	MAGI2	c.501G>T p.E167D Missense variant NM_012301		

CLINICAL TRIALS

Single-agent Cobimetinib for Adults With Histiocytic Disorders (NCT02649972)

Phase II New York, NY - 969 mi

LOW COVERAGE REGIONS

KDM5D

NEXT-LINE OF THERAPY AND RECOMMENDATIONS

- Cladribine, or
- Cytarabine, or
- Pembrolizumab, or
- Autologous SCT, or...
- Pexidartinib, or palliative/hospice

DECIDED TO ASSESS THE RELEVANCE OF CSF1R VUS

- Colony Stimulating Factor 1 Receptor
- Expressed in macrophages and monocytes
- Ligand: IL34, CSF1 (MCSF1), and upon binding, cause homodimerization and subsequent activation of downstream pathways
- Overexpression, rearrangement and mutations are associated with pathology: tenosynovial giant cell tumor - a destructive synovial tumor associated with CSF1-COL6A3 translocation leading to overexpression of CSF1

Cancer Immunol Res. 2020 Jun;8(6):829-841

TARGETING CSF1R

Abeykoon et al, AJH, 2022

IS THIS MUTATION FUNCTIONAL (ACTIVATING) OR NOT?

Abeykoon et al, AJH, 2022

Redrawn from: Abeykoon et al, AJH, 2022

03/2020

- Patient was paraplegic, cachectic and dehydrated due to nausea and vomiting requiring frequent hospitalizations and emergency department visits
- We identified that this VUS in CSF1R (never reported) which could be possibly functional
- Commenced on pexidartinib

- Patient regained the lower extremity strength completely
- Tolerating oral diet well without nausea or vomiting
- All her brown hair turned white

Abeykoon et al, AJH, 2022

Patient's consent was obtained

IS THERE A CURE?

DEFINITION OF A CURE

- That there are no traces of your cancer after treatment and the cancer will never come back
- Cancer has gone away with treatment, no more treatment is needed, and the cancer is not expected to come back

American Cancer Society[®]

IS THERE A CURE?

- Discontinuation of vemurafenib caused disease relapse in 75% of patients within 6 months
- Fixed duration treatment could have prolonged disease remission with cladribine – cure?
 - Two of the 17 responded patients maintained a response after 6 months of followup

Cohen, Blood, 2017 Goyal, JAMA Onc, 2017

IS THERE A CURE?

Cytarabine responses; redrawn from: Liu et al, Orphanet J Rare Dis. 2022; 17: 39

EVOLUTION OF ECD

Arrow width and font size depict the impact of the respective regimens in the treatment of Erdeim-Chester disease Treatment year represents the reported year of the index case(s) or clinical trial(s)

💮 Targeted oncologic therapy

SUMMARY

- ECD is a cancer with driver mutations.
- There could be other epiphenomenal alterations.
- Targeting genetic alterations (BRAF, MAPK, CSF1R) could lead to durable responses but is unlikely to achieve a cure.
- Chemotherapy could sometimes be beneficial and could achieve deep and durable responses – perhaps a cure in some patients.
- There is an unmet need to find new driver alterations in ECD and understand the mechanisms associated with resistance to targeted therapy.
- Practicing team science, and precision medicine is critical.

PERHAPS?

THANK YOU FOR ALL THE PATIENTS AND PROVIDERS!

QUESTIONS & ANSWERS

