Novel Alterations in *CSF1R*, *RET*, and Other Diverse Kinases in the Histiocytoses with Biochemical and Structural Insights into Their Mechanisms of Activation

Erdheim-Chester Disease Medical Symposium Milan, Italy
July 11, 2019

Benjamin H. Durham

Instructor
Department of Pathology
Omar Abdel-Wahab Laboratory
Human Oncology and Pathogenesis Program
Memorial Sloan Kettering Cancer Center
New York, NY, United States

Published Kinase Alterations in the Histiocytoses

Langerhans Cell Histiocytosis

Badalian-Very, et al. Blood 2010

Kansal, et al. Genes Chrom Cancer 2013 Nelson, et al. Blood 2014

Brown NA, et al. Blood 2014 Chakraborty, et al. Blood 2014 Nelson, et al. Genes Chrom Cancer 2015 Chakraborty et al. Blood 2016 Lee, et al. JCI Insight 2017 Zarnegar, Durham, et al. Pediatr Blood Cancer. 2017 Héritier, et al. Mol Cancer. 2017

Non-Langerhans Cell Histiocytosis

Haroche, et al. Blood 2012

Diamond, et al. Blood 2013 Go, et al. Histopathology 2014 Emile, Diamond, et al. Blood 2014 Chakraborty, et al. Blood 2014 O'Malley, et al. Ann Diagn Pathol 2015 Kordes, et al. Leukemia 2015

Lee, et al. JCI Insight 2017 Charkraborty et al. Oncotarget 2017 Techavichit, et al. Hum Pathol. 2017 Garces, et al. Mod. Pathol. 2017 Bentel et al. BMJ Case Rep. 2017.

Brown RA, et al. Blood 2015
Diamond, Durham, Haroche, et al. Cancer Discovery 2016
Durham, et al. Curr Opin Hematol. 2016
Shanmugan, et al. Head Neck Pathol. 2016

Questions

- What other novel alterations drive histiocytic neoplasms?
- Are there genetic differences across the diverse clinical and histologic subtypes of histiocytoses?
- What is/are the cell(s)-of-origin in the histiocytoses?
- What is the basis for familial histiocytoses?

Histiocytic Neoplasms Sequenced (n=270)

N = 270

Overall Histiocytoses Cohort (n=270)

Frequency of Kinase Alterations Identified (n = 270)

Erdheim-Chester Disease Cohort (N = 100)

Langerhans Cell Histiocytosis Cohort (N = 92)

Juvenile Xanthogranuloma Cohort (N = 55)

N = 55

Rosai-Dorfman Disease Cohort (N = 17)

Sequencing Analyses
Whole Exome Sequencing (WES) and/or
Whole Transcriptome Sequencing (WT)
Targeted DNA and/or RNA Sequencing

Histiocytic Sarcoma (HS) Cohort (N = 6)

N = 6

Correlation of Kinase Mutations with Histiocytosis Subtype

Recurrent CSF1R Mutations

<u>CSF1R</u>: The receptor for MCSF (<u>Macrophage Colony Stimulating Factor</u>) and IL-34

Controls production, differentiation, and function of macrophages

Expression is <u>restricted</u> to progenitor cells committed to the monocyte/macrophage lineage.

Principles of Activation of Human CSF1R

Structural Mapping of *CSF1R* Activating Mutations and Proposed Impact of CSF1R Activation

Enhance dimerization propensity in the absence of ligand

CSF1RP386L

Enhance dimerization propensity in the absence of ligand

CSF1RW450_E456del

Promotion of the receptor's Intrinsic kinase activity

- Affect intracellular regions critical to enforcing the inactive state of the kinase domain in the absence of ligand

CSF1RY546_K551del

CSF1R Mutations in the Histiocytoses are Activating

CSF1R Mutations in Histiocytoses are Activating via Phospho-Flow Cytometry

CSF1R Deletion Mutations are Sensitive to CSF1R Inhibitors (Pexidartinib and BLZ 945)

Identical Twins with Histiocytosis

Monozygotic, dichorionic Identical twin girls

JXG in Monozygotic Twins – Family History

Shared <u>Somatic</u> CSF1R and NF1 Mutations in Monozygotic Twins

Twin 2

JXG Mutational Signatures in Monozygotic Twins with the Highest Ranked Signature Being DNA Mismatch Repair

Microsatellite Instability is Rare in the Histiocytoses – However, Both Twins Show Microsatellite Instability by Next-Generation Sequencing

CSF1R Mutants Expressed on Cell Surface

Developmental Origins of Macrophages

Frederic Geissmann

derived hematopoietic stem cell? ted monocyte/dendritic cell precursor?

Geissman, F, et al. Science 2010 Schulz, et al. Science 2012 Gomez Perdiguero, E, et al. Nature 2015

- **1**Shared CSF1R mutant yolk-sac precursor.
- 2 Hematogenous dissemination of shared precursor of histiocytosis in utero.

Spectrum of CSF1R/CSF1 Mutant Diseases

Hereditary Diffuse
Leukoencepholopathy with
Spheroids: Germline LOF
CSF1R mutations

Rademakers, et al. Nat Gen 2012

Tenosynovial Giant Cell Tumor: Ectopic overexpression of CSF1

West, et al. PNAS 2006; Tap, et al. NEJM 2015

Kinase Fusions in Histiocytoses

Kinase Fusions in Histiocytoses

NCOA4-RET Fusions in JXG/AXG are Activating

RET inhibitor Response in NCOA4-RET JXG/AXG

RET inhibitor Response in NCOA4-RET JXG/AXG

MEK Inhibitor Response in BICD2-BRAF Fusion LCH

Pre-Trametinib

Post-Trametinib

ALK Inhibitor Response in KIF5B-ALK Fusion ECD

Pre-Treatment

Post-Treatment

Conclusions

- Diverse <u>kinase mutations</u> and <u>fusions</u> continue to drive systemic histiocytic neoplasms.
- Recurrent, activating *CSF1R* mutations in familial and sporadic histiocytoses,
 - Suggests the cell-of-origin belongs to committed monocyte/macrophage progenitors.
 - Highlights therapeutic potential for *CSF1R* inhibition in histiocytoses.
- First description of other kinase and receptor tyrosine kinase [MAPK7 (ERK5), MAPK3
 (ERK1) ALK, KIT, MET, JAK3, and CSF3R] mutations and first RET fusions uncovered in
 the histiocytoses.
- **BRAF**^{V600E} is prevalent in LCH and ECD but not in other histiocytoses subtypes. There is also an enrichment of **NTRK1** fusions and **CSF1R** mutations in **JXG** and **BRAF** fusions and deletions in LCH compared to other histocytoses in this cohor
- Kinase alterations other than BRAF^{V600E} have direct therapeutic implications.

Genetic Alterations

BRAF V600E	MAP2K1/2 Mutations	Other RAF/MAPK Mutations	<i>BRAF</i> Fusions	RET Fusions	CSF1R Mutations	ALK Fusions	NTRK Fusions
Vemurafenib	MEK Inhibition			RET	CSF1R	ALK	NTRK1
Debrafenib				Inhibition	Inhibition	Inhibition	Inhibition

Interferon, Anakinra, other non-kinase drugs

Therapy

THANK YOU

Memorial Sloan Kettering Cancer Center New York, NY, United States

Omar Abdel-Wahab

Abdel-Wahab Lab

- Alessandro Pastore
- Eunhee Kim
- Aki Yoshimi
- Justin Taylor
- Stan Lee
- Young Rock Chung
- Daichi Inoue
- Syd Lu
- Hana Cho
- Michelle Ki
- Lillian Bitner

Eli Diamond

Developmental Therapeutics

David Hyman

Neal Rosen Lab

- Neal Rosen
- Zhan Yao
- Yijun Gao

Leukemia Service

Raajit Rampal

Neurology

Justin Buthorn

Center for Molecular Oncology (CMO)

- David Solit
- Mike Berger

Geissmann Lab

Marc Ladanyi

Molecular Diagnostics

Maria Arcila

- Estibaliz Lopez-Rodrigo
- Frederic Geissmann

University of Pittsburgh, Pittsburgh, PA

- Jennifer Picarsic
- Ronald Jaffe

INSERM Research Unit, Paris, France

- Julien Haroche
- Jean-Francois Emile
- Jean Donadieu

Funding Sources

GEOFFREY BEENE

Damon Runyon
Cancer Research
Foundation

Ahmet Dogan

Hematopathology

- Neval Ozkaya
- Janine Pichardo