ADULT-ONSET (INFRATENTORIAL) LEUKOENCEPHALOPATHY as PRESENTING MANIFESTATION of ERDHEIM-CHESTER DISEASE

GIULIO CAVALLI, M.D.
INTERNAL MEDICINE AND CLINICAL IMMUNOLOGY
IRCCS SAN RAFFAELE HOSPITAL
VITA-SALUTE SAN RAFFAELE UNIVERSITY
MILAN, ITALY
cavalli.giulio@hsr.it
INTRODUCTION

- **Leukoencephalopathies** are diseases characterized by degeneration of the white matter of the central nervous system (CNS).

- Most leukoencephalopathies are hereditary diseases of childhood; however, they can also present in adulthood, with a progressive, incurable course, resembling degenerative disorders of the CNS.

- The etiology of adult-onset leukoencephalopathies remains unknown in about 30–50 % of cases.
AIMS AND METHODS

- In this study, we report the clinical and radiologic features of 9 adult patients with leukoencephalopathy primarily affecting the cerebellum and brainstem, or ‘infratentorial leukoencephalopathy’ (ITL), and eventually diagnosed with ECD.

- All patients were initially followed up at a Neurologic Hospital, and were eventually diagnosed with ECD based on typical imaging findings at Tc99m bone scintigraphy and compatible histology.
REPRESENTATIVE CLINICAL CASE

Middle-aged adult male

Ataxia ± other neurological symptoms (spasticity, cranial nerve dysfunction, cognitive decline, neurogenic bladder, diabetes insipidus)

Gradual onset
LEUKOENCEPHALOPATHIES with PROMINENT INFRATENTORIAL INVOLVEMENT: DIFFERENTIAL DIAGNOSIS

MULTIPLE SCLEROSIS
LBSL (Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation)
FXTAS
Cerebrotendineous xanthomatosis (CTX)
Adult autosomal-dominant leukodystrophy (LMNB1)
Alexander Disease
Mitochondrial defects
CLCN2-related leukodystrophy

ISOLATED CASE
NO EVIDENCE OF AUTOIMMUNE or HEREDITARY DISEASES
UNREMARKABLE CSF EXAMINATION

HISTIOCYTOSIS ?
HISTIOCYTOSES AND CNS

ABNORMALLY PROLIFERATING HISTIOCYTES

ECD (CD68+/CD1a−)
Langerhans (CD68+/CD1a+)
Mixed forms

INVASION

INTRACRANIAL MASS-FORMING LESIONS

PARANEOPlastic

INFRATENTORIAL LEUKOENCEPHALOPATHY
INFRATENTORIAL LEUKOENCEPHALOPATHY RELATED TO HISTIOCYTOSIS: DIAGNOSIS
<table>
<thead>
<tr>
<th>Sex, age</th>
<th>Neurologic Manifestations</th>
<th>Systemic Manifestations</th>
<th>Biopsy</th>
<th>Infratentorial Abnormalities (T2 HI)</th>
<th>Brain MRI</th>
<th>Supratentorial Abnormalities (T2 HI)</th>
<th>Hypothalamic pituitary axis</th>
<th>Meninges</th>
<th>Spine and spinal cord</th>
</tr>
</thead>
<tbody>
<tr>
<td>M, 70</td>
<td>Gait disturbances, Ataxia, Spasticity, DI</td>
<td>Retroperitoneal Pericardial Aorta</td>
<td>Perinephric BRAFV600E</td>
<td>Cerebellar peduncles (enhanced), Brainstem (enlarged pons)</td>
<td>No</td>
<td>Loss of T1-HI in neurohypophysis</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>F, 68</td>
<td>Gait disturbances, Ataxia, Spasticity, Neurogenic bladder, DI</td>
<td>No</td>
<td>Bone</td>
<td>Cerebellum (dentate nuclei), Cerebellar peduncles, Brainstem (pons and midbrain)</td>
<td>Internal capsules, Basal ganglia, Subcortical white matter</td>
<td>Loss of T1-HI in neurohypophysis</td>
<td>No</td>
<td>T2-HI in lateral columns (cervical)</td>
<td></td>
</tr>
<tr>
<td>M, 59</td>
<td>Gait disturbances, Ataxia, Diplopia, Dysarthria, DI</td>
<td>Pulmonary</td>
<td>Bone</td>
<td>Cerebellum (dentate nuclei), Cerebellar peduncles, Brainstem (enlarged pons) T1-HI in dentate nucleus</td>
<td>T1-HI in caudate nuclei</td>
<td>Loss of T1-HI in neurohypophysis</td>
<td>No</td>
<td>T2-HI in lateral columns (thoracic and lumbar)</td>
<td></td>
</tr>
<tr>
<td>M, 50</td>
<td>Gait disturbances, Ataxia, Spasticity, Neurogenic bladder, DI</td>
<td>Fever Weight loss</td>
<td>Basicranium</td>
<td>Cerebellum (dentate nuclei, enhanced) Cerebellar peduncles</td>
<td>Internal capsules, Subcortical white matter, Corona radiata; T1-HI in internal capsules</td>
<td>T2-HI of infundibular stalk (enhanced)</td>
<td>No</td>
<td>T2-HI in lateral columns (cervical)</td>
<td></td>
</tr>
<tr>
<td>F, 54</td>
<td>Ataxia, Spasticity, Neurogenic bladder, DI</td>
<td>No</td>
<td>Dorsal vertebral pedicle</td>
<td>Cerebellum (dentate nuclei), Cerebellar peduncles, Brainstem, Trigeminal nerves; T1-HI in dentate nucleus (enhanced)</td>
<td>Internal capsules, Subcortical white matter, Corona radiata; T1-HI in internal capsules</td>
<td>Loss of T1-HI in neurohypophysis</td>
<td>No</td>
<td>T2-HI in lateral columns (thoracic)</td>
<td></td>
</tr>
<tr>
<td>M, 52</td>
<td>Gait disturbances, Ataxia, Dysphagia, Behavioral changes, DI</td>
<td>No</td>
<td>Bone</td>
<td>Cerebellum (dentate nuclei), Cerebellar peduncles Brainstem</td>
<td>Subcortical white matter</td>
<td>Loss of T1-HI in neurohypophysis</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>M, 44</td>
<td>Gait disturbances, Ataxia, Diplopia, Dysarthria, DI</td>
<td>No</td>
<td>Bone BRAFV600E</td>
<td>Cerebellum (dentate nuclei), Cerebellar peduncles, Brainstem, Trigeminal nerves; T1-HI in dentate nucleus</td>
<td>Internal capsules Corona radiata; Optic chiasm (enlarged, enhanced)</td>
<td>Loss of T1-HI in neurohypophysis T2-HI of infundibular stalk (enhanced)</td>
<td>No</td>
<td>T2-HI in lateral columns (cervical, thoracic, lumbar)</td>
<td></td>
</tr>
<tr>
<td>M, 65</td>
<td>DI</td>
<td>No</td>
<td>Not performed</td>
<td>Cerebellum (deep white matter), Brainstem, Cerebellar peduncles, Trigeminal nerves</td>
<td>Optic chiasm (enlarged)</td>
<td>Loss of T1-HI in neurohypophysis T2-HI of infundibular stalk (enhanced)</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>F, 60</td>
<td>Gait disturbances, Ataxia, Neurogenic bladder, DI</td>
<td>Pericardial Aorta Exophthalmos Orbit</td>
<td></td>
<td>Cerebellum, Brainstem, Cerebellar peduncles, Trigeminal nerves; T1-HI in dentate nucleus</td>
<td>Internal capsules, Subcortical white matter, Corona radiata; T1-HI in internal capsules (enhanced)</td>
<td>Loss of T1-HI in neurohypophysis</td>
<td>No</td>
<td>T2-HI in lateral columns (cervical)</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

• ECD emerges as a cause of adult-onset ITL, a finding with relevant diagnostic and therapeutic implications.

• Brain involvement causing ITL may predate the clinical onset of systemic manifestations of ECD.

• Investigations aimed at unveiling ECD are indicated in all patients with ITL, even in the absence of typical ECD manifestations.

• Diagnosing ECD enables therapeutic strategies in patients with adult-onset leukoencephalopathy, an otherwise untreatable, chronically degenerative condition.
ACKNOWLEDGEMENTS

Ettore Salsano
Luisa Chiapparini
Mario Savoiardo
IRCCS CARLO BESTA NEUROLOGIC HOSPITAL

Lorenzo Dagna
INTERNAL MEDICINE AND CLINICAL IMMUNOLOGY
IRCCS SAN RAFFAELE HOSPITAL
VITA-SALUTE SAN RAFFAELE UNIVERSITY